SciML

Lei Huang

Dec 17, 2021

CONTENTS

1	Physics Informed NN PINN	3
2	Neural ODE (NODE)	5
3	Univeral Differential Equations (UDE)	7
4	Hamiltonian Neural Network (HNN)	9
5	Indices and tables	11

It is a repository to experiment Scientific Machine Learning (SciML) in simulating physical dynamics, understanding machine learning pros and cons in scientific computing, and discovering physical rules using the data-driven and physics-based method.

The fundamental crux of the project is to solve a variety of differential equations with machine learning.

We studied the following physical phenomenons:

- 1. Pendulum
- 2. Spring Mass
- 3. Wave Propagation
- 4. Poisson
- 5. Lorenz

with the following SciML models:

ONE

PHYSICS INFORMED NN PINN

Link: https://nips.cc/

TWO

NEURAL ODE (NODE)

THREE

UNIVERAL DIFFERENTIAL EQUATIONS (UDE)

FOUR

HAMILTONIAN NEURAL NETWORK (HNN)

Hamiltonian fundamentals:

Link: http://www.scholarpedia.org/article/Hamiltonian_systems

FIVE

INDICES AND TABLES

- genindex
- modindex
- search